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Brain extraction is an important procedure in brain image analysis. Although numerous brain extractionmethods
have been presented, enhancing brain extractionmethods remains challenging because brainMRI images exhibit
complex characteristics, such as anatomical variability and intensity differences across different sequences and
scanners. To address this problem, we present a Locally Linear Representation-based Classification (LLRC) meth-
od for brain extraction. A novel classification framework is derived by introducing the locally linear representa-
tion to the classical classification model. Under this classification framework, a common label fusion approach
can be considered as a special case and thoroughly interpreted. Locality is important to calculate fusion weights
for LLRC; this factor is also considered to determine that Local Anchor Embedding is more applicable in solving
locally linear coefficients compared with other linear representation approaches. Moreover, LLRC supplies a
way to learn the optimal classification scores of the training samples in the dictionary to obtain accurate classifi-
cation. The International Consortium for Brain Mapping and the Alzheimer's Disease Neuroimaging Initiative
databases were used to build a training dataset containing 70 scans. To evaluate the proposed method, we
used four publicly available datasets (IBSR1, IBSR2, LPBA40, and ADNI3T, with a total of 241 scans). Experimental
results demonstrate that the proposed method outperforms the four common brain extraction methods (BET,
BSE, GCUT, and ROBEX), and is comparable to the performance of BEaST, while being more accurate on some
datasets compared with BEaST.

© 2014 Elsevier Inc. All rights reserved.
Introduction

Brain extraction, also known as skull stripping, aims to remove non-
brain tissues (e.g., scalp, skull, and dura); this procedure is an important
step in brain image analysis. StrippedMRI brain images provide several
advantages in terms of several factors, such as brain tissue classification
(Shattuck et al., 2001), registration (Shen and Davatzikos, 2004), and
cortical surface reconstruction (Dale et al., 1999). Accurate brain extrac-
tion is also important for cortical thickness estimation; on the one hand,
cortical thickness may be overestimated if the dura is not removed (van
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der Kouwe et al., 2008). On the other hand, cortical thickness may be
underestimated if the cortical surface is unintentionally removed. The
manual delineation of the brain is time consuming and suffers from
inter-operator variations. For these reasons, semi-automated and auto-
mated brain extraction methods are more preferred than manual
delineation.

Anatomical changes in the brain caused by diseases or old age pres-
ent a major challenge when designing a brain extraction method. For
instance, the brains of older individuals usually exhibit atrophy with
higher rates of brain tissue loss compared with those of younger indi-
viduals. Diseases such as Alzheimer's disease (AD) and mild cognitive
impairment (MCI) lead to the loss of brain tissue. Image variations
also present another challenge because of various acquisition sequences
and scanner types.Most existing brain extractionmethods often need to
be tuned to work on a certain type of study or a certain population.
Hence, a reliable and robust method that is capable of working on a va-
riety of brain morphologies and acquisition sequences would be highly
desired in neuroimaging studies.

To extract the brain, researchers developed numerous algorithms,
such as morphology operations (Chiverton et al., 2007; Lemieux
et al., 1999; Mikheev et al., 2008; Park and Lee, 2009; Ward, 1999),
atlas matching (Ashburner and Friston, 2000), histogram analysis
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(Shan et al., 2002), watershed (Hahn and Peitgen, 2000), graph cuts
(Sadananthan et al., 2010), level sets (Baillard et al., 2001; Zhuang
et al., 2006), deformable models (Smith, 2002), label fusion
(Eskildsen et al., 2012; Leung et al., 2011), and hybrid approaches
(Carass et al., 2011; Iglesias et al., 2011; Rehm et al., 2004; Rex
et al., 2004; Segonne et al., 2004; Shattuck et al., 2001; Shi et al.,
2012). Each of these methods provides advantages and disadvan-
tages. For instance, morphology operations are fast and can be easily
adjusted; however, this method fails to determine the optimum
morphology size necessary to separate brain tissues from non-
brain tissues (Park and Lee, 2009). Histogram (Shan et al., 2002)
and watershed (Hahn and Peitgen, 2000) methods are simple and
consistently producing complete boundaries. However, these two
methods are sensitive to noise, which is a common problem encoun-
tered in intensity-based methods. Brain extraction methods based
on deformable surfaces can achieve a smooth closed surface. Howev-
er, these methods assume that the brain surface is smooth with low
curvature; this characteristic is often not observed on the brain
boundary, particularly in basal regions (Hahn and Peitgen, 2000).
In meta-algorithm (Rex et al., 2004; Shi et al., 2012), several existing
brain extraction methods are combined to compensate for the weak-
nesses of each method. However, the model should be specifically
designed through meta-algorithm to gain optimum performance
when new data are sufficiently different from previous training
datasets (Rex et al., 2004).

Label fusion-based segmentation methods have been extensively
studied. For instance, in MAPS (Leung et al., 2011), non-rigid registra-
tions of selected atlases to the target image are initially used, and a
label fusion technique is then applied to merge the labels from the
atlases to create an optimal segmentation in the target image. SuperDyn
(Khan et al., 2011) is another popular fusion-based method, in which
the spatially local weights for atlases are determined by combining
the supervised weight learned from the training set and the dynamic
weight obtained from the target–atlas pairing. The main disadvantages
of these two methods include (1) their long computational time (19 h
for MAPS), and (2) the heavy dependence of the segmentation perfor-
mance on the registration accuracy. A patch-based label fusion method
called BEaST has been proposed (Eskildsen et al., 2012). In BEaST,
non-rigid registration is not required but is replaced with rough
affine alignment to reduce computational costs. The weights of the
fused labels are calculated using non-local means approach (Buades
et al., 2005); experimental results show that the patch-based label fu-
sion approach significantly increases the segmentation accuracy. Fur-
thermore, a multi-resolution framework is used in BEaST to improve
computational efficiency and robustness. Although label fusion-based
methods provide optimum performance for brain extraction, a number
of fundamental problems of label fusion, such as the estimation of the
labels of test samples by linearly combining the labels of training sam-
ples and themechanism bywhich fusionweights are calculated remain
unclear and require further investigation.

In the current study, a Locally Linear Representation-based Clas-
sification (LLRC) method for brain extraction is presented. In LLRC,
the locally linear representation is introduced into the classical clas-
sification model and a novel classification framework is derived.
Under this classification framework, the label fusion approach can
be considered a special case and thoroughly interpreted. Locality is
important to calculate fusion weights for LLRC; this factor is also
considered to determine that Local Anchor Embedding (LAE) (Liu
et al., 2010) is more applicable in solving locally linear coefficients
compared with other linear representation approaches, such as
Sparse Coding (SC) (Wright et al., 2009), non-local means (Buades
et al., 2005), and Locality-constrained Linear Coding (LLC) (Wang
et al., 2010). Moreover, LLRC supplies a way to learn the optimal
classification scores of the training samples in the dictionary to
obtain accurate classification. The proposed method was tested on
multiple datasets acquired on different scanners. The performance
of the proposed brain extraction method was thoroughly evaluated
by comparing with other methods, such as brain extraction tool (BET)
(Smith, 2002), brain surface extractor (BSE) (Shattuck et al., 2001),
GCUT (Sadananthan et al., 2010), ROBEX (Iglesias et al., 2011), and
BEaST.
Datasets

Six public datasets (two for training and four for evaluation) were
used in our study. The scan parameters of each dataset are listed in
Table 1.

The training dataset consisted of 70 T1-weighted scans from two
datasets, in which 10 scans were obtained from the International
Consortium for Brain Mapping (ICBM) database (age: 18 years to
43 years) (Mazziotta et al., 1995) and 60 scans were obtained from
the Alzheimer's Disease Neuroimaging Initiative (ADNI) database
(age: 55 years to 91 years) (Mueller et al., 2005). The ICBM database
consisted of healthy subjects. The ADNI database contained cognitive-
normal (CN) subjects and subjects with AD and MCI. 20 T1 MRI scans
from each class (CN, AD, MCI) were chosen to construct the ADNI train-
ing dataset in the present study. All of the scans and their corresponding
brain masks in the training dataset were obtained from the websites
found in a previous study (Eskildsen et al., 2012). To increase the size
of our training dataset, we flipped these 70 scans and their correspond-
ing brain masks along the mid-sagittal plane by utilizing the symmetric
properties of the human brain. Thus, our training dataset consisted of a
total of 140 scans (original and flipped).

The first test dataset, called IBSR1, was provided by the Internet
Brain Segmentation Repository (IBSR)3 and consisted of 18 T1-
weighted scans and their corresponding brain masks obtained
from healthy subjects (age: 7 years to 71 years). Some of the scans
showed relatively low contrast between the brain and surrounding
tissues.

The second test dataset, also provided by IBSR,was named IBSR2 and
comprised 20 T1-weighted scans of normal subjects (29.0 ± 4.8 years
old) and their corresponding brain masks. This dataset exhibited low
resolution in addition to high heterogeneity of several scans; as a result,
classifying IBSR2 was challenging.

The third test dataset, namely, LPBA404, consisted of 40 T1-weighted
scans of normal subjects (29.2 ± 6.30 years old) and their correspond-
ing brain masks.

The fourth test dataset (ADNI3T dataset) consisted of 163 (46 CN, 80
MCI, and 37 AD) T1-weighted MRI scans and their corresponding brain
masks from the baseline time point of the ADNI database. The demo-
graphics of the subjects are shown in Table 2.

The manual brain extraction protocols of these datasets are given as
follows:

For the training dataset, the brainmask includes all cerebral and cer-
ebellar white matter (WM), all cerebral and cerebellar gray matter
(GM), cerebral spinal fluid (CSF) in the ventricles (lateral, third and
fourth) and cerebellar cistern, CSF in deep sulci and along the surface
of the brain and brain stem, and the brainstem (pons, medulla).

For the IBSR1 and IBSR2 test datasets, the brain mask includes all
cerebral and cerebellar WM, all cerebral and cerebellar GM, CSF in the
ventricles (lateral, third and fourth), CSF in deep sulci and along the
surface of the brain and brain stem, and the brainstem (pons, medulla).

The definition of the brain mask of the LPBA40 test dataset is the
same as that of the training dataset.

For the ADNI3T test dataset, the brain mask includes GM and WM
and excludes internal and external CSF.

http://www.cma.mgh.harvard.edu/ibsr/)
http://www.loni.ucla.edu/)


Table 1
Scan parameters of each dataset.

Dataset Field strength (T) Imaging parameters

Training dataset ICBM 1.5 TR = 18 ms, TE = 10 ms, flip angle = 30°, and rectangular fields of view of 256 mm (superior–inferior)
and 204 mm (anterior–posterior). The sagittal slice thickness was 1 mm.

ADNI 1.5 TR = 2300 ms, TI = 1000 ms, TE = 3.5 ms, and flip angle = 8°. The sagittal slice thickness was 1.2 mm
with an in-plane resolution of 0.94 mm.

Test dataset IBSR1 1.5 Each scan has 128 coronal slices with pixel dimensions ranging from 0.84 mm to 1 mm on each slice. The
slice thickness is 1.5 mm.

IBSR2 1.5 Ten scans: TR = 40 ms, TE = 8 ms, and flip angle = 50°. The slice thickness of each scan was 3.1 mm and
the in-plane resolution is 1 mm × 1 mm.
Ten scans: TR = 50 ms, TE = 9 ms, and flip angle = 50°. The slice thickness of each scan was 3.0 mm and
the in-plane resolution is 1 mm × 1 mm.

LPBA40 1.5 TR = 10.0 ms to 12.5 ms; TE = 4.22 ms to 4.5 ms; and flip angle = 20°. The coronal slice thickness was
1.5 mmwith an in-plane resolution of 0.86 mm (38 subjects) or 0.78 mm (2 subjects).

ADNI3T 3 TR = 2300 ms, TI = 900 ms, minimum full TE, and flip angle = 8°. The sagittal slice thickness was 1.2 mm
with an in-plane resolution of 1 mm.
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Methods

The proposed method consists of four major steps: preprocessing,
feature extraction, LLRC-based classification, and postprocessing. To re-
duce the computational costs, we embedded the proposed method in a
multi-resolution framework. The flowchart of the proposed method is
illustrated in Fig. 1.

LLRC

Basic idea of LLRC
Brain extraction can be considered as a two-class (brain tissue and

non-brain tissue) classification problem. A two-class classification prob-
lem is defined in this section.

For a test sample x ∈ RK, the objective of this classification is to find
the function H : RK ↦ R such that H(x) is a “good” predictor of a real
classification score y ∈ [0, 1], where the sample x stands for the image
feature in the current study (details in the “Feature extraction” section)
and the classification score y stands for the probability that sample x be-
longs to the object. To learn H, we used a training set T= {x(i), y(i)}i = 1

M ,
where M known sample-score pairs are included. The cost function of
this classification can be defined based on this training set by using

J ¼
XM

i¼1
H x ið Þ� �

−y ið Þ��� ���2: ð1Þ

This is a classic learning based classification model. In the current
study, locally linear representation was introduced to this model and
the LLRC method was proposed. Before the proposed LLRC was intro-
duced, the following assumptions were considered as the bases for
LLRC:

Assumption 1. Samples lie on a non-linear manifold that can be ap-
proximated locally and linearly on the basis of their nearest neighbors.
This assumption is reasonable and has been applied successfully in
previous methods (Roweis and Saul, 2000; Wang et al., 2010).

Assumption 2. The classification functionH is differentiable and can be
fitted locally and linearly.
Table 2
The demographics of the 163 subjects with 3 T MRI scans.

CN (n = 46) MCI (n = 80) AD (n = 37)

Mean age ± SD, years 75.0 ± 4.0 75.3 ± 7.6 74.1 ± 8.9
Gender (male, %) 18 (39%) 48 (60%) 14 (37.8%)
Considering Assumption 1, we can represent sample x as Eq. (2) if a
matrix D = [d1, d2, ⋯, dN], called dictionary in this study, consists of N
typical samples of the original sample space:

x ¼ Daþ ε ¼
XN

j¼1
ajd j þ ε

s:t: εk kbτ;

∀d j∉Νx kð Þ; aj ¼ 0

ð2Þ

where Νx(k) is the set of k nearest neighbors of x in D. ε is the recon-
struction error. τ is a small positive real number that ensures the recon-
struction accuracy. a= (a1, a2, ⋯, aN)T is the weight coefficient vector of
the linear combination. Many (at least N-k) elements of a are zeros for
an arbitrary sample x, indicating that the described linear representa-
tion is sparse. A stronger locality constraint should be used in Eq. (2)
compared with the previous constraint, such that Eq. (3) is expressed
to emphasize the locality of the proposed linear representation and
apply Assumption 2 smoothly.

x ¼ Daþ ε ¼
XN

j¼1
ajd j þ ε

s:t: εk kbτ
∀d j∉Νx kð Þ; aj ¼ 0XN

j
a j ¼ 1; aj≥0

ð3Þ

These constraints ensure that the reconstructed sample is a convex
combination of its closest neighbors. In other words, the reconstructed
sample is located in a small convex region on a hyperplane spanned
by the closest neighbors. Considering that this small convex region is
consistent with Assumption 2, such that the classification function H is
linear in this small local region, we can rewrite H(x) (ignoring ε) as
Eq. (4):

H xð Þ ¼ H Dað Þ ¼ H
XN
j¼1

ajd j

0
@

1
A ¼

XN
j¼1

ajH d j

� �
¼
XN
j¼1

ajh j ¼ aTh; ð4Þ

where h=(h1, h2, ⋯, hN)T, and hj=H(dj) is the classification score of the
jth atom vector inD and should belong to [0,1]. Eq. (4) indicates that the
classification score of a sample can be estimated by the linear combina-
tion of the classification scores of its k nearest neighbors in D. The com-
bination coefficients can be calculated by solving linear representation
problem in original sample space (“Locally linear representation”
section).



Fig. 1. Flowchart of the proposed method.
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On the basis of Eq. (4), the cost function defined by Eq. (1) can be re-
written as

J hð Þ ¼
XM
i¼1

‖
XN
j¼1

a ið Þ
j h j−y ið Þ‖

2 ¼
XM
i¼1

a ið ÞTh−y ið Þ��� ���2 s:t: hj⊂ 0;1½ � ; ð5Þ

where hj is considered as a parameter that should be learnt. To solve
Eq. (5), we can use the trust-region method (“Classification score
learning” section).

The proposed LLRC method was based on these concepts. Using the
training set T={x(i), y(i)}i = 1

M , we should construct a dictionaryD=[d1,
d2, ⋯, dN]; we can also estimate h=(h1, h2, ⋯, hN)T, which consists of the
classification score of each atomvector inD, byminimizing Eq. (5). For a
test sample x, the classification score of x can be estimated according to
Eq. (4) if the correspondingweight coefficient vector a in Eq. (3) can be
solved appropriately.

Eq. (4) indicates the basic principle of the label fusion approaches, in
which we use the linear combination of the labels (classification score)
of the training samples to estimate the label of the test sample. A label
fusion approach can be considered a special case of LLRC and therefore
is reasonable only when Assumptions 1 and 2 are held. In addition,
Assumption 2 suggests that linear representation should be constrained
to a local region, indicating that locality is an important factor in solving
linear representation.

Dictionary leaning
Manually labeled original samples in a training set are used to con-

struct D (Wright et al., 2009). However, numerous original training
samples possibly produce a large D, which dramatically increases com-
putational and memory costs. In the current study, more than one mil-
lion labeled samples are available for training. As such, subsequent
processes are impractical when conducted traditionally. In addition,
several previous studies (Gao et al., 2012;Wang et al., 2010) have veri-
fied that k-means (Macqueen, 1967) produces a representative dictio-
nary for sparse representation. Therefore, we used k-means method to
cluster the training samples and selected the cluster centers as the
atom vectors to construct D.
To obtain D, we partitioned the original sample set {x(i)}i = 1
M into N

sub-sets G = {Gi}i = 1
N by using k-means, such that the within-cluster

sum of squares is minimized:

argmin
G

XN
i¼1

X
x jð Þ∈Gi

x jð Þ−di

��� ���2; ð6Þ

where di is the mean (cluster center) of the samples in Gi.

Locally linear representation
To approximately represent a sample linearly based on the training

samples, researchers proposed several methods, such as SC (Wright
et al., 2009), non-local means (Buades et al., 2005), LAE (Liu et al.,
2010), and LLC (Wang et al., 2010). Sparse representation emphasizes
the sparsity of the representation, in which the lowest number of train-
ing samples is used to reconstruct a test sample with minimum recon-
struction error. Non-local means, LLC, and LAE focus on locality rather
than sparsity by limiting linear codes in a local region. In non-local
means method, the weight coefficients are determined according to
the distance between the samples by using Gaussian kernels; however,
using this method cannot ensure that a minimum reconstruction error
defined in Eq. (2) is obtained. In LAE, the weight coefficients are main-
tained as non-negative values and the sum is equal to one; in this meth-
od, the reconstructed sample is a convex combination of its closest
neighbors. As mentioned in the “Basic idea of LLRC” section, the locality
of the representation is preferred for the proposed LLRC. Therefore, LAE
was chosen to solve the linear representation in the current study. To
ensure completeness, we briefly describe LAE in the succeeding section.

Considering the concrete task in the present paper, we can rewrite
the cost function of LAE as

a� ¼ argmin
a

‖x−
XN
j¼1

ajd j‖
2
s:t: ∀d j∉Νx kð Þ; aj ¼ 0

XN
j

a j ¼ 1; aj≥0

ð7Þ

Three steps were performed to obtain the solution of LAE. (I) k
nearest neighbors of test sample x was selected from D and Νx(k) was
constructed; (II) For djs that do not belong to Νx(k), the associated ajs
were set to 0; (III) For remaining djs that belong to Νx(k), their corre-
sponding ajs were calculated using the projected gradient method (Liu
et al., 2010).

Classification score learning
In the proposed LLRC, the classification score of each atom vector of

D was learnt. The cost function defined in Eq. (5) can be rewritten as

J hð Þ ¼
XM

i¼1
a ið ÞTh−y ið Þ��� ���2

¼
XM

i¼1
a ið ÞTh
� �2

−2a ið ÞThy ið Þ þ y ið Þ� �2� �

¼
XM

i¼1
a ið ÞTh
� �T

a ið ÞTh
� �

−2a ið ÞThy ið Þ þ y ið Þ� �2� �

¼
XM

i¼1
hT a ið Þa ið ÞT� �

h−2y ið Þa ið ÞThþ y ið Þ� �2� �

¼ hT XM
i¼1

a ið Þa ið ÞT� �� �
h−2

XM
i¼1

y ið Þa ið ÞT Þhþ
XM

i¼1
y ið Þ� �2�

ð8Þ

Here, we set Q ¼ ∑M
i¼1 a ið Þa ið ÞT
� �

and P ¼ ∑M
i¼1y

ið Þa ið ÞT Þ
�

, respec-
tively. Therefore, Eq. (8) can be rewritten as

J hð Þ ¼ hTQh−2Phþ
XM

i¼1
y ið Þ� �2 ð9Þ



Table 3
Summary of the parameter settings used in the proposed method.

Parameter Description Setting

k Number of the neighbors of LAE 25 at level L2, 45 at level L1, and
50 at level L0

N Dictionary size 30,000
w Patch size w × w × w 5
P Levels of multi-resolution 3
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To learn the h of D, we minimize the cost function J(h) as:

h� ¼ argmin
h

J hð Þ ¼ argmin
h

hTQh−2Phþ
XM
i¼1

y ið Þ� �2 !

¼ argmin
h

hTQh−2Ph
� �

s:t:h⊂ 0;1½ �

ð10Þ

Eq. (10) is a quadratic programming problem; in the present study,
the trust-region-reflective algorithm was used to solve this problem.
Furthermore, the initial classification score of the cluster centers can
be estimated and added to the algorithm to accelerate the convergence.
The initialization of h is noted as h(0) = [h1(0), ⋯, hi(0), ⋯ hN

(0)]T, and hi
(0)

can be estimated as

h 0ð Þ
i ¼ 1

O Gið Þ
X

x jð Þ∈Gi

y jð Þ
; ð11Þ

where y(j) is the classification score associated with training sample x(j),
and O(Gi) is the size of Gi defined in Eq. (6).

Summary of LLRC
To clearly elucidate the concept of LLRC, we provided a pseudo-code

for LLRC in Algorithm 1.

Algorithm 1. LLRC
Input: Training set T = {x(i), y(i)}i = 1

M ; A test sample x.
Output: The classification score y of x.

Stage 1 Dictionary learning
Partition {x(i)}i = 1

M into N sub-sets using k-means methods and
choose cluster centers to construct dictionary D.

Stage 2 Calculation of locally linear representation coefficients
Reconstruct each x(i) in T based on dictionary D by using the
LAE method and calculate the coefficient vector a(i).

Stage 3 Classification score learning
Learn h=(h1, h2, ⋯, hN)T by solving the quadratic programming
problem in Eq. (10).

Stage 4 Core of LLRC
Reconstruct the input sample x based on dictionary D by using
the LAE method and calculate the coefficient vector a.
Calculate the classification score y of x based on the obtained h
according to Eq. (4).

Preprocessing

Considering the findings of (Eskildsen et al., 2012), we used the nor-
malization of intensity and space to reduce the variance across the im-
ages and improve the accuracy of brain extraction. In the current
study, the following similar preprocessing steps were performed on all
images in our training and test datasets. First, the N3 algorithm (Sled
et al., 1998) was utilized to remove bias field artifacts from the images.
Second, intensities in the scans were normalized according to a two-
step method (Nyul et al., 2000). Third, spatial normalization was
performed by linear registration (by FLIRT5 using cross correlation
as cost) to the publicly available ICBM152 average (Mazziotta et al.,
2001). Afterward, the images were aligned to a standard template
space with an image size of 193 × 229 × 193 and a voxel size of
1 mm × 1 mm × 1 mm. Finally, intensities were normalized again
by performing the following steps. Intensity values at 0.1% and
99.9% of the histogram of the voxels were calculated in an
5 http://www.fmrib.ox.ac.uk/fsl/
approximate brain mask. These two values were then used to
scale the voxel intensities linearly in the range [0, 100].

Considering that all of the imageswere linearly aligned to a standard
template space, we defined an initial mask, which provided the volume
of interest of classification to reduce the computational costs of the pro-
posedmethod. Like (Eskildsen et al., 2012),we define the initialmask as

CM ¼ ∪C
i¼1Vi−∩C

i¼1Vi; ð12Þ

where Vi is the ith brain mask in the training dataset and C is the total
number of brain masks. The defined initial mask is the difference be-
tween the union and the intersection of all brain masks in the training
dataset. The proposed classification method is performed in this initial
mask region under the assumption that the training dataset represents
all brain sizes after spatial normalization.

Feature extraction

A patch-based technique is used to extract image feature. The inten-
sity values in a patch around a voxel v are obtained and rearranged as a
feature vector. To obtain spatial information, we sampled the coordi-
nates of v and considered these factors as sub-features. The coordinates
were normalized to [0, 100] beforehand to ensure consistency with the
intensity value. In our study, the patch with the size of w × w × w was
used. Therefore, the final feature x of v is (w3 + 3)-dimensional.

Postprocessing

The resolution of the standard template spacemay be different from
that of the original image space; thus, to void the lack of accuracy, the
segmentations obtained in the standard template space were wrapped
back to the native image space by using the inverse of the linear regis-
tration (“Preprocessing” section).

Multi-resolution framework

To improve robustness and reduce computational costs of the pro-
posed method, we used a multi-resolution framework similar to that
in a previous study (Eskildsen et al., 2012). For a multi-resolution
framework with P levels, classification originated from the coarsest
level LP − 1 to the finest level L0 (original resolution) to extract the
brain. The classification scores for all voxels in coarser levels were up-
sampled to initialize the classification for a finer level by using trilinear
interpolation method. At each level, a confidence threshold α is defined
to determine the specific voxels that can be labeled directly using the
propagated initial classification scores and the specific voxels that re-
quire further processing. In the current study, the voxels with initial
classification scores y b α were labeled as non-brain tissue and voxels
with y N 1 − α were labeled as brain tissue. The remaining voxels
with y∈ [α, 1− α] were fed into the proposed LLRC classifier for an ac-
curate classification. This procedure is repeated until the resolution of
the original level L0 is reached.

We used three levels (P = 3) with corresponding voxel sizes of
1 mm × 1 mm × 1 mm, 2 mm × 2 mm × 2 mm, and 4 mm × 4 mm ×
4mm. The threshold values (α) were set to 0.2 at L1 and L2 and 0.5 at L0.
α Confidence threshold described in
“Postprocessing” section

0.2 at levels L1 and L2, and
0.5 at level L0

http://www.fmrib.ox.ac.uk/fsl/)


Fig. 2. Effect of different numbers of neighbors on the reconstruction error.
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Fig. 3. Box-whisker plot of DS of classification using different dictionary sizes. Experiments performed by LOOCVwith 140 images. The boxes indicate the 25th, 50th, and 75th percentiles.
The whiskers indicate the most extreme data points excluding outliers (within three standard deviations from the mean). Outliers are marked as red crosses.
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Experimental results

Assessment measures

To evaluate the performance of the algorithms, we used four quanti-
tativemetrics, namely, Dice similarity coefficient (DS), Jaccard similarity
(JS), false positive rate (FPR), and false negative rate (FNR). These mea-
sures are defined as follows:

DS ¼ 2 A∩Bj j
Aj j þ Bj j ; JS ¼ A∩Bj j

A∪Bj j ; FPR ¼ A∩B
�� ��
A∪Bj j ; FNR ¼

A∩B
��� ���
A∪Bj j

where A and B are the voxel sets of the extraction result and brainmask,
respectively. DS and JS can be used to measure the errors between the
extraction result and brain mask; FPR and FNR can be used to quantify
the extent of overextraction and underextraction.

In addition, the projection maps of false positive and false negative
voxels were used to evaluate the algorithms qualitatively. In the
normalized spatial space described in the “Preprocessing” section, the
false positive (false negative) mask based on the false positive (false
negative) error voxels of extraction can be obtained for each test
image. All of these masks in the test database were averaged, and a
mean false positive (false negative) mask image was obtained. The
intensities of these mean mask images indicated the positions and fre-
quencies of the error voxels of the test images. For simple visualization,
Fig. 4. DS of classification using different random initializations.
the projection maps of the mean mask image on the sagittal, coronal,
and axial directionswere calculated and used for qualitative evaluation.
Parameter optimization

To optimize the parameters, a series of experiments was performed
on the training dataset in a leave-one-out cross-validation (LOOCV)
manner. Each of the 140 images in the training dataset was used as
test image, and the remaining 138 images (aside from the test image
and its flipped image) were used as training images. Under this situa-
tion, the proposedmethodwas testedwith different parameter settings
to obtain the setting that achieves the best performance. The parameter
settings used in the proposed method are summarized in Table 3.

A straightforward way was adopted to determine parameter k
(defined in the “Locally linear representation” section), which repre-
sents the number of neighbors used by LAE. A number of random sam-
ples from the training datasetwere reconstructed by LAEwith varying k.
The reconstructed errors were then used to evaluate the effectiveness of
k. The k that results in theminimum reconstruction error is regarded as
the optimum selection. In our experiment, the dictionary sizewas set to
30,000, and the patch size w was fixed to 5. A total of 20,000 samples
were randomly sampled from the training dataset. This procedure was
performed at each resolution level, and the result is shown in Fig. 2.
The reconstruction errors reach their minimum when k is set to 25 at
Fig. 5. DS of classification using different patch sizes.
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Fig. 6. (a) Dice similarity of the proposed method on different test datasets. (b) A slice of the outlier in IBSR2 dataset using the proposed method. The brain extraction result in this slice
using the proposed method is shown in yellow curve.
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level L2, 45 at level L1, and 50 at level L0. Thus, the optimal selection of k
has been performed for the subsequent experiments.

Dictionary learning is an important step of LLRC. As k-means was
adopted to create the dictionary, two factors should be carefully consid-
ered in the implementation: the dictionary size N and the initialization
of k-means. To optimize the dictionary size and investigate the influence
of the initialization of k-means on the performance of LLRC, two exper-
iments were conducted in an LOOCV manner. Patch sizewwas fixed to
5. Parameter kwas set to 25 at level L2, 45 at level L1, and 50 at level L0.
For each level, a dictionary was constructed. Therefore, three dictionar-
ies were created with the proposed method. The same N was assigned
Fig. 7. Example of brain extraction results using the proposed method on each test dataset. Fro
each image indicates the outline of the brain extracted by the proposed method.
to these three dictionaries. In thefirst experiment, the proposedmethod
was tested using different dictionaries with sizes varying from 2000 to
50,000. The result (see Fig. 3) shows that classification accuracywas im-
proved by increasing N, in which the average DS increased from 0.9782
(N= 2000) to 0.9843 (N= 50,000)with gradually decreasing standard
deviation. However, a larger dictionary corresponds to higher com-
putation and memory costs. To attain a trade-off between the mem-
ory and computation costs and the accuracy, the dictionary size N
was set to 30,000 in subsequent experiments. In the second experi-
ment, k-means clustering was performed twice with different ran-
dom initializations at each resolution level to create two sets of
m first to third column: coronal, sagittal, and axial views of each subject. The blue curve in
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Fig. 8. Dice similarity, Jaccard similarity, false positive rate and false negative rate of different brain extraction methods in IBSR1 dataset.

Fig. 9.Dice similarity, Jaccard similarity, false positive rate and false negative rate of different brain extractionmethods in IBSR2 dataset. The outlier mentioned in “Evaluation on four test
datasets” section in IBSR2 dataset has been excluded from the analysis.
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Fig. 10. Dice similarity, Jaccard similarity, false positive rate and false negative rate of different brain extraction methods in LPBA40 dataset.

Fig. 11. Dice similarity, Jaccard similarity, false positive rate and false negative rate of different brain extraction methods in ADNI3T dataset.
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Table 4
Mean ± standard deviations of the evaluation metrics with different brain extraction methods on the IBSR1 dataset. The best results from each column are shown in bold. p-Values of
paired t-tests comparing the different methods with the proposed method are listed in the bottom five rows.

Method DS JS FPR% FNR% DS (without CSF) JS (without CSF) FPR% (without CSF) FNR% (without CSF)

BET 0.945 ± 0.014 0.896 ± 0.025 9.40 ± 2.90 1.03 ± 1.40 0.970 ± 0.013 0.941 ± 0.024 5.20 ± 2.77 0.69 ± 0.92
BSE 0.945 ± 0.028 0.896 ± 0.049 3.73 ± 1.58 6.67 ± 4.67 0.957 ± 0.019 0.918 ± 0.034 2.07 ± 1.31 6.15 ± 4.13
GCUT 0.919 ± 0.017 0.850 ± 0.029 14.9 ± 2.89 0.12 ± 0.31 0.968 ± 0.020 0.938 ± 0.037 6.07 ± 3.59 0.12 ± 0.35
ROBEX 0.925 ± 0.038 0.862 ± 0.063 12.9 ± 6.65 0.93 ± 0.76 0.962 ± 0.028 0.928 ± 0.051 6.43 ± 5.46 0.77 ± 0.54
BEaST 0.967 ± 0.009 0.937 ± 0.016 4.83 ± 1.73 1.43 ± 0.70 0.983 ± 0.008 0.967 ± 0.016 2.37 ± 1.69 0.97 ± 0.35
Proposed 0.968 ± 0.006 0.937 ± 0.011 2.97 ± 1.04 3.3 ± 1.52 0.979 ± 0.007 0.959 ± 0.014 1.85 ± 1.13 2.26 ± 0.98

Proposed method compared to other methods (p-values)
BET 2.48 × 10−6 2.19 × 10−6 8.45 × 10−10 2.11 × 10−6 0.01 0.01 5.75 × 10−5 3.33 × 10−5

BSE 1.10 × 10−3 1.00 × 10−3 4.65 × 10−2 3.40 × 10−3 6.16 × 10−5 4.98 × 10−5 0.59 6.55 × 10−4

GCUT 8.94 × 10−9 5.63 × 10−9 2.98 × 10−14 1.47 × 10−7 0.03 0.03 5.88 × 10−5 1.11 × 10−9

ROBEX 2.03 × 10−4 1.20 × 10−4 4.45 × 10−6 1.35 × 10−7 0.02 0.02 1.90 × 10−3 4.63 × 10−6

BEaST 0.95 0.99 1.57 × 10−6 3.50 × 10−7 0.15 0.14 0.29 1.52 × 10−5

Table 5
Mean ± standard deviations of the evaluation metrics with different brain extraction methods on the IBSR2 dataset. The best results from each column are shown in bold. p-Values of
paired t-tests comparing the different methods with the proposed method are listed in the bottom five rows. The outlier mentioned in the “Evaluation on four test datasets” section in
IBSR2 dataset has been excluded from the analysis.

Method DS JS FPR% FNR% DS (without CSF) JS (without CSF) FPR% (without CSF) FNR% (without CSF)

BET 0.940 ± 0.011 0.887 ± 0.019 11.1 ± 2.05 0.20 ± 0.16 0.963 ± 0.013 0.929 ± 0.024 7.03 ± 2.48 0.12 ± 0.09
BSE 0.940 ± 0.047 0.890 ± 0.073 6.23 ± 2.14 4.76 ± 7.67 0.951 ± 0.047 0.909 ± 0.074 4.57 ± 2.28 4.53 ± 7.88
GCUT 0.861 ± 0.090 0.764 ± 0.109 23.62 ± 10.75 0.002 ± 0.004 0.935 ± 0.080 0.885 ± 0.112 11.46 ± 11.13 0.02 ± 0.04
ROBEX 0.942 ± 0.010 0.890 ± 0.017 10.44 ± 2.04 0.59 ± 0.44 0.967 ± 0.010 0.936 ± 0.019 5.85 ± 2.15 0.51 ± 0.34
BEaST 0.967 ± 0.007 0.936 ± 0.012 5.34 ± 1.60 1.07 ± 0.56 0.974 ± 0.008 0.950 ± 0.015 4.09 ± 1.75 0.85 ± 0.40
Proposed 0.969 ± 0.005 0.939 ± 0.010 3.86 ± 1.01 2.28 ± 1.10 0.972 ± 0.005 0.946 ± 0.009 3.77 ± 1.07 1.72 ± 0.86

Proposed method compared to other methods (p-values)
BET 3.06 × 10−12 1.98 × 10−12 6.56 × 10−16 1.05 × 10−9 7.80 × 10−3 8.10 × 10−3 6.68 × 10−5 1.34 × 10−9

BSE 1.31 × 10−3 6.20 × 10−3 9.71 × 10−5 0.17 0.03 0.02 0.19 0.13
GCUT 7.80 × 10−6 2.71 × 10−8 1.78 × 10−9 1.07 × 10−10 0.02 0.01 4.90 × 10−3 3.05 × 10−10

ROBEX 1.06 × 10−12 7.80 × 10−13 9.52 × 10−15 3.80 × 10−7 0.04 0.04 5.71 × 10−4 1.83 × 10−6

BEaST 0.37 0.39 1.60 × 10−3 1.32 × 10−4 0.20 0.20 0.49 3.28 × 10−4
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dictionaries, which were used to test the performance of classifica-
tion. As shown in Fig. 4, the mean DS values of brain extraction
were 0.9840 and 0.9836 for these two sets of dictionaries. This result
indicates that the classification accuracy is not sensitive to the
initialization of k-means (paired t-test p = 0.5784) when random
selection approach is adopted.

Patch size w is a crucial parameter that should be carefully deter-
mined. In the current experiment, we also used the LOOCV method to
Table 6
Mean ± standard deviations of the evaluation metrics with different brain extraction methods
paired t-tests comparing the different methods with the proposed method are listed in the bo

Method DS JS FPR% FNR% D

BET 0.968 ± 0.005 0.939 ± 0.009 4.43 ± 1.26 1.72 ± 0.61 0
BSE 0.958 ± 0.039 0.921 ± 0.063 1.56 ± 2.57 6.36 ± 4.82 0
GCUT 0.939 ± 0.021 0.885 ± 0.036 11.3 ± 3.82 0.26 ± 0.56 0
ROBEX 0.966 ± 0.004 0.934 ± 0.007 2.58 ± 0.74 4.05 ± 0.89 0
BEaST 0.977 ± 0.003 0.954 ± 0.006 1.48 ± 0.81 3.10 ± 1.06 0
Proposed 0.973 ± 0.003 0.947 ± 0.006 1.87 ± 0.55 3.26 ± 0.93 0

Proposed method compared to other methods (p-values)
BET 3.86 × 10−5 4.82 × 10−5 4.12 × 10−18 9.85 × 10−20 1
BSE 1.55 × 10−2 1.03 × 10−2 0.44 1.67 × 10−4 0
GCUT 6.00 × 10−12 2.87 × 10−12 6.24 × 10−19 5.08 × 10−23 2
ROBEX 1.59 × 10−15 1.92 × 10−15 1.52 × 10−6 2.36 × 10−6 5
BEaST 1.59 × 10−10 5.43 × 10−11 3.83 × 10−6 0.07 1
evaluate the effect of w on classification performance. We set the
same w at different levels and fixedw to 3, 5, and 7. In addition, param-
eter kwas set to 25 at level L2, 45 at level L1, and50 at level L0 for different
w. Fig. 5 shows that classification accuracy was improved (paired t-test
p = 0.006) by increasing w from 3 to 5, in which the average DS
increased from 0.9819 (w = 3) to 0.9836 (w = 5). However, the
classification accuracy of w = 7 is similar to that of w= 5 (paired t-test
p= 0.9431). Therefore, we chose w= 5 for subsequent experiments.
on the LPBA40 dataset. The best results from each column are shown in bold. p-values of
ttom five rows.

S (without CSF) JS (without CSF) FPR% (without CSF) FNR% (without CSF)

.983 ± 0.006 0.966 ± 0.012 2.97 ± 1.23 0.45 ± 0.15

.974 ± 0.035 0.951 ± 0.059 1.24 ± 1.52 3.68 ± 5.07

.970 ± 0.018 0.941 ± 0.034 5.72 ± 3.47 0.15 ± 0.42

.981 ± 0.004 0.964 ± 0.007 1.47 ± 0.47 2.18 ± 0.62

.989 ± 0.002 0.978 ± 0.005 1.09 ± 0.66 1.06 ± 0.37

.986 ± 0.003 0.973 ± 0.005 1.45 ± 0.65 1.30 ± 0.38

.90 × 10−3 1.90 × 10−3 1.22 × 10−9 1.93 × 10−21

.03 0.02 0.43 4.10 × 103

.03 × 10−7 1.52 × 10−7 4.57 × 10−11 5.36 × 10−21

.21 × 10−9 5.13 × 10−9 0.84 4.22 × 10−11

.56 × 10−6 1.40 × 10−6 0.02 5.30 × 10−3



Table 7
Mean ± standard deviations of the evaluation metrics with different brain extraction
methods on the ADNI3T dataset. The best results from each column are shown in bold.
p-Values of paired t-tests comparing the different methods with the proposed method
are listed in the bottom five rows.

Method DS JS FPR% FNR%

BET 0.963 ± 0.021 0.930 ± 0.035 1.54 ± 1.14 5.47 ± 3.61
BSE 0.936 ± 0.077 0.886 ± 0.081 1.11 ± 1.29 10.30 ± 7.88
GCUT 0.790 ± 0.364 0.762 ± 0.365 12.31 ± 18.47 11.54 ± 24.94
ROBEX 0.966 ± 0.077 0.939 ± 0.078 3.18 ± 2.49 2.88 ± 7.71
BEaST 0.983 ± 0.009 0.967 ± 0.017 2.17 ± 1.46 1.10 ± 1.39
Proposed 0.984 ± 0.008 0.968 ± 0.016 1.52 ± 0.96 1.72 ± 1.69

Proposed method compared to other methods (p-values)
BET 1.67 × 10−26 6.99 × 10−30 0.84 3.54 × 10−28

BSE 5.12 × 10−28 1.00 × 10−30 1.10 × 10−3 3.77 × 10−34

GCUT 3.70 × 10−11 2.67 × 10−12 5.32 × 10−13 7.04 × 10−7

ROBEX 3.20 × 10−3 7.33 × 10−6 1.82 × 10−14 5.94 × 10−2

BEaST 0.72 0.67 6.41 × 10−5 2.75 × 10−4
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Performance of the proposed method

Evaluation on four test datasets
The proposed method was extensively evaluated on the IBSR1,

IBSR2, LPBA40, and ADNI3T datasets. For ADNI3T, CSF should be exclud-
ed from the extracted brain before being compared with the masks
because of its differences in mask definitions from the training datasets.
As suggested by (Leung et al., 2011), a threshold of 60% of the mean
Fig. 12. Projection maps of false positives and false negatives for the brain extraction generated
projection maps are shown in the same scale.
intensity of the brainmaskwas used to exclude CSF from the segmented
images in our experiment.

Fig. 6 (a) shows the DS of the classifications on these four test
datasets. The classification accuracy on IBSR1 is similar to that on
IBSR2 (p = 0.9345, two sample t-test). An outlier in IBSR2 may be
caused by intensity heterogeneity and the registration error in the
corresponding MRI image (Fig. 6 (b)). However, the intensity inho-
mogeneity of this outlier seems to be quite uncommon (Fig. 6 (b)).
This outlier would be discarded by image quality control in a clinical
study. Therefore, this outlier was excluded from subsequent analysis.
In addition, the proposed method provided more accurate results
on LPBA40 than on IBSR1 and IBSR2 (p = 6.55 × 10−5 and p = 1.55 ×
10−4, respectively, two sample t-test). Furthermore, the brain extrac-
tion results of the proposed method achieved the highest scores on
the ADNI3T dataset. Thus, the proposed method has reliability and ro-
bustness in working on these four datasets. Fig. 7 shows an example
of the results of brain extraction with the use of the proposed method
on each test dataset.
Computation and memory cost
In the current study, the experiments were implemented on a stan-

dard PC by using a single thread on an Intel Core i5-2400 processor at
3.10 GHz. In the brain extraction of a subject with N = 30,000 in the
test step, the processing time was approximately 24 min, of which
4 min was allotted for intensity and spatial normalization, and 20 min
was allotted for classification. In the training step, constructing a dictio-
nary with N = 30,000 from a training dataset with 140 images con-
sumed 5 h.
by BET, BSE, GCUT, ROBEX, BEaST, and the proposed method on IBSR1 dataset. All of the
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Fig. 13. Projection maps of false positives and false negatives for the brain extraction generated by BET, BSE, GCUT, ROBEX, BEaST, and the proposed method on IBSR2 dataset. All of the
projection maps are shown in the same scale. The outlier mentioned in “Evaluation on four test datasets” section in IBSR2 dataset has been excluded from the analysis.

334 M. Huang et al. / NeuroImage 92 (2014) 322–339
Memory cost is an important factor for the feasibility of a method.
For the proposedmethod, the memory cost mainly includes the storage
of the under-processing image and the dictionaries. In our implementa-
tion, three dictionaries with a size of 30,000 reside in the memory. In
addition, the required memory is 128 × 30,000 × 3 × 4 = 43.9 mega-
bytes (assuming one voxel needs 4 bytes to store).

Comparison with other methods

To evaluate the performance of the proposedmethod, we compared
the proposedmethodwith BET, BSE, GCUT, ROBEX, and BEaST. BET, BSE,
and GCUT are widely used in several brain extraction comparisons
(Iglesias et al., 2011; Shi et al., 2012). ROBEX and BEaST are two recently
developed brain extraction methods. To conduct a rational comparison,
we adjusted the parameters of each method until optimum perfor-
mance was achieved. The succeeding sections describe the setups of
these methods in detail.

Setups

BET (ver. 2.1, in FSL ver. 5.0.2). In the comparison experiment, BET was
performed using intensity normalized and stereotaxically aligned im-
ages with default parameters (Eskildsen et al., 2012).

BSE (ver. 11a). For both IBSR1 and IBSR2 datasets, BSE was performed
using the parameters as suggested in a previous study (Park and Lee,
2009). For volumes 7 to 12 in IBSR1 dataset, the following parameters
were set: diffusion iterations = 3; diffusion constant = 25; edge con-
stant= 0.6; and erosion size=2. For other images in the IBSR1 dataset,
the parameters were fixed as follows: diffusion iterations= 3; diffusion
constant = 25; edge constant = 1; and erosion size = 2. For the IBSR2
dataset except for several images (7_8, 8_4, 13_3, 111_2, and 191_3),
the following default parameters were used: diffusion iterations = 3;
diffusion constant = 0.25; edge constant = 0.62; and erosion size =
1. The following parameters were used for the other images in the
IBSR2 dataset: diffusion iterations = 3; diffusion constant = 5; edge
constant = 0.75; and erosion size = 1. For the LPBA40 dataset, the fol-
lowing parameters were used as suggested in a previous study (Iglesias
et al., 2011): diffusion iterations = 5; diffusion constant = 15; edge
constant = 0.65; and erosion size= 1. For the ADNI3T dataset, the fol-
lowing parameters were used as suggested in a previous study (Leung
et al., 2011): diffusion iterations = 4; diffusion constant = 20; edge
constant = 0.7; and erosion size = 1.

GCUT. For the IBSR1, IBSR2, and LPBA40 datasets, the following default
parameters were used as suggested by previous studies (Iglesias et al.,
2011; Sadananthan et al., 2010): threshold = 36; importance of inten-
sity = 2.3. For the ADNI3T dataset, we varied the threshold between
32 and 40 (with increments of 1) and the importance of intensity
between 1 and 3 (with increments of 0.1). The best combinations
were determined for the ADNI3T dataset.

ROBEX (ver. 1.0).All of the scanswere oriented similar to the atlas before
they were fed to ROBEX. ROBEX requires no parameter adjustments.

BEaST (ver. 1.15). All of the parameters were set as presented in a previ-
ous study (Eskildsen et al., 2012).

Comparison results
Figs. 8 to 11 show the box plots with different evaluated metrics for

each brain extraction method and test dataset. Tables 4 to 7 list addi-
tional details of DS, JS, FPR, and FNR of all the methods in the four
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Fig. 14. Projection maps of false positives and false negatives for the brain extraction generated by BET, BSE, GCUT, ROBEX, BEaST, and the proposedmethod on LPBA40 dataset. All of the
projection maps are shown in the same scale.
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datasets. BET provided good results in the four datasets with the nor-
malized data. The classification accuracy of BSE was similar to that of
BET (p N 0.1, paired t-test) in the IBSR1, IBSR2, and LPBA40 datasets,
but BSE produced more outliers than BET. BSE underextracted the im-
ages because of low FPR and high FNR; by contrast, BET overextracted
the images with high FPR and low FNR. Moreover, BSE had a failed seg-
mentation (DS=0) in the ADNI3T dataset (Fig. 11). Although GCUT ex-
hibited the lowest FNR (except for the ADNI3T dataset), FPR was high
because GCUT maintained a large amount of non-brain tissues. Thus,
GCUT obtained the lowest DS and JS values among the six methods.
Moreover, GCUT performed well in most cases in the ADNI3T dataset
but had 27 failed segmentations (DS=0). ROBEX provided a consistent
result in the IBSR2 dataset. However, ROBEX produced some outliers in
the IBSR1 dataset, and exhibited high FPR in the IBSR1 and IBSR2
datasets. In addition, ROBEX had a failed segmentation (DS = 0) in
the ADNI3T dataset. BEaST produced robust results in the four datasets.
The proposed method yielded average DS values of 0.968 in the IBSR1
dataset, 0.969 in the IBSR2 dataset, 0.973 in the LPBA40 dataset, and
0.984 in the ADNI3T dataset. The proposed method has the highest ex-
traction accuracy for the IBSR1, IBSR2, and ADNI3T datasets (p b 0.01 for
allmethods except BEaST; Tables 4, 5, and 7). FPR in the proposedmeth-
od was also lower than that of BEaST in the IBSR1, IBSR2, and ADNI3T
datasets. This result indicated that BEaST retained more non-brain tis-
sues than the proposedmethod. However, FNR in the proposedmethod
was higher than that of BEaST in the IBSR1, IBSR2, and ADNI3T datasets,
indicating that the proposed method tends to remove more brain
tissues than BEaST in these three datasets. The proposed method
yielded the second highest DS values in the LPBA40 dataset after BEaST.
Figs. 12 to 15 show the projection maps for the false positive and
false negative voxels to visualize the extraction errors in each brain ex-
traction method and test dataset. Fig. 16 shows the typical results using
different extraction methods in each dataset. BET likely retained extra
non-brain tissues near the brain stem and on the top of the head
(Figs. 12 to 14). BSE and BET behaved similarly in the IBSR2 dataset,
but BSE removes more brain tissue than BET in the IBSR1, LPBA40, and
ADNI3T datasets (Fig. 16). GCUT showed very few false negative voxels
(except for theADNI3T dataset), but a large amount of non-brain tissues
were retained in the four datasets. ROBEX likely oversmoothened the
brain surface, thereby leading to inclusion of the dura or exclusion of
the GM (Fig. 16). BEaST included extra non-brain tissues near the bot-
tom of the head in the IBSR1 and IBSR2 datasets (Figs. 12 to 13). The
proposed method provided consistent and robust brain extractions in
the four datasets.

The datasets have differences in their definitions ofmasks, and an ar-
bitrary amount of CSF voxels may be included in the gold-standard
skull-stripped images; therefore, segmentations that exclude the CSF
were compared in our experiment. For the IBSR1, IBSR2, and LPBA40
datasets, a threshold of 36% of the mean intensity of WM was used to
exclude CSF from the segmented images and themasks for fair compar-
ison, as suggested by (Sadananthan et al., 2010). The results are listed in
the last four columns of Tables 4 to 6. The brain extraction accuracy of
the different methods without CSF is consistently higher than that
with CSF. In addition, the performance of GCUTwithout CSF significant-
ly improved (paired t-test p-value b 0.01) probably because GCUT
intends to retain more non-brain tissues than the five other brain
extraction methods.
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Discussion

In the present study, a novel brain extractionmethodwas proposed,
in which the following advantageswere observed. An LLRCmethodwas
developed to solve the brain extraction problem. Two assumptions
were considered to elucidate the mechanism on why the labels of test
samples can be estimated by linear combination of the training sample's
labels in label fusion method. The LAE method was more applicable in
solving the locally linear coefficients under locality constraint compared
with other linear representation approaches. In addition, LLRC supplies
away to learn the optimal classification scores of the training samples in
the dictionary.

This study is motivated by LLE (Roweis and Saul, 2000), which as-
sumes that samples lie on a non-linear manifold and can be approxi-
mated locally and linearly. The weights of this linear approximation
can be determined using several approaches, such as LLE (Roweis and
Saul, 2000), SC (Wright et al., 2009), non-local means (Buades et al.,
2005), LLC (Wang et al., 2010), and LAE (Liu et al., 2010). For dimension-
ality reduction, LLE calculates the weights by solving the linear least
squares problem with a constraint that fixes the sum of the weights to
1. LLC adopts an approach similar to LLE to determine theweights; how-
ever, LLC is used for classification. SC emphasizes the sparsity of the rep-
resentation, in which the lowest number of bases is used to reconstruct
the target by means of basis pursuit approach. Non-local means deter-
mines the weights according to the distance between the samples by
using Gaussian kernels, which cannot ensure theminimum reconstruc-
tion error but seems to be fit for denoisingmethods (Gong et al., 2010).
In LAE, weight coefficients are maintained as non-negative values, and
the sum is equal to one, which is a strong locality constraint and is desir-
able for LLRC to ensure the rationality of the Assumption 2 suggested in
the current study.
Fig. 15. Projection maps of false positives and false negatives for the brain extraction generated
projection maps are shown in the same scale.
In the present study, k-means method was used to generate the dic-
tionary. In our experiment, we found dictionary size (i.e., the number of
clusters) to be an important parameter that affects the performance of
the classification. The experimental result shows that a larger dictionary
corresponds to higher classification accuracy and greater computation
andmemory costs. An optimal parameter selection is achieved bymak-
ing a trade-off between the memory and computation costs and the
accuracy. In addition, the classification performance is not sensitive to
the initialization of k-means when random selection approach is
adopted. In future studies, other complex clustering methods can
be used to improve performance further. For instance, we can learn
multi-dictionaries for different spatial regions to capture more dis-
criminative information on the objects or use a learning strategy to
learn a dictionary, as reported in (Wang et al., 2010).

In the proposedmethod, patch sizewwas adjusted to optimize per-
formance. In general, larger patches lead to more discriminative infor-
mation for identifying different tissues. However, in high-dimensional
feature spaces associated with larger patches, a larger dictionary is
needed to construct the basis of the space, and more samples are re-
quired to train the model. In our experiment, the classification accuracy
ofw=5 is similar to that ofw=7(paired t-test p= 0.9431). Therefore,
a moderate-sized patch was more applicable in the proposed method
than patches of other sizes.

In the present study, six datasets were used to evaluate the perfor-
mance of the proposed method. The classification accuracy of the
LPBA40 dataset is higher than that of the IBSR1 and the IBSR2 datasets
(Fig. 6). The enhanced performance of LPBA40 was caused by two rea-
sons. First, the brain mask definition of the LPBA40 dataset is similar
to that of the training dataset, whereas the CSF in the cerebellar cistern
is excluded from the IBSR1 and IBSR2 test datasets. Second, LPBA40
exhibits good resemblance to the training data.
by BET, BSE, GCUT, ROBEX, BEaST, and the proposedmethod on ADNI3T dataset. All of the
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We compared the proposed method with other common brain
extractionmethods (BET, BSE, GCUT, ROBEX, and BEaST). Our perfor-
mance evaluation results are consistent with those in previous find-
ings (Iglesias et al., 2011; Park and Lee, 2009; Sadananthan et al.,
2010). BET and BSE showed similar extraction accuracies, and the
performances of these two methods are consistently high on the
four test datasets. However, BET performed efficiently on normalized
images with little or no visible neck; the performance of BSE was de-
pendent on accurately adjusted parameters as previously reported
Fig. 16. Typical results using BET, BSE, GCUT, ROBEX, BEaST, and the proposed method on four d
the segmentation results of the corresponding brain extraction methods. Green voxels indicate
(Iglesias et al., 2011). In GCUT, intensity thresholding is performed
and narrow connections are then removed using the graph cut method,
which may fail to cut connections without noticeable intensity separa-
tion between brain and non-brain tissues (Sadananthan et al., 2010),
such as those in several volumes in the IBSR1 dataset. In ROBEX, the
same problem was encountered, although a generative model can
maintain the integrity of the brain extraction result. Thus, the least ac-
curate brain extraction results of ROBEX were observed in the IBSR1
dataset. The proposed method provided a comparable performance to
atasets. Coronal and sagittal slices of the segmentations are shown. Blue voxels represent
the false positives and red voxels indicate the false negatives.
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BEaST on the IBSR1, IBSR2, and ADNI3T datasets, and highly outper-
forms other methods (p b 0.05) on the four test datasets.

In BEaST, several closest images from the library are first selected on
the basis of their similarity to the target image. Label fusion is then per-
formed for each voxel in the target image by using fusion weights to
combine similar patches from the closest images. This label fusion
method is the same as selecting samples from a very large dictionary
that consists of all the samples in the training dataset. As previously
mentioned, a large dictionary generally benefits classification accuracy.
This is an important factor for BEaST to achieve very high accuracy.
However, a large dictionary increases memory cost. In our experiment,
the training dataset includes 140 images with a size of 193 × 229 × 193.
To perform BEaST, all these images need to be loaded into the memory,
whose size should at least be 193 × 229 × 193 × 140 × 4= 4.45 giga-
bytes (assuming one voxel needs 4 bytes to store). Compared with
that of BEaST, the memory cost of the proposed method is much
lower (128 × 30000 × 3 × 4 = 43.9 megabytes, “Computation and
memory cost” section). In other words, the proposed method
achieves competitive accuracy with significantly lower memory
cost ( 128�30000�3�4

193�229�193�140�4 ¼ 1
104) than BEaST. This property is an attrac-

tive advantage of the proposed method. In addition to the dictionary
size, the spatial constraint of the patch searching scheme in BEaST
contributes to the high accuracy. In BEaST, similar patches are select-
ed within a search area, which is a box centered at the testing voxel
in the template space. Therefore, the selected patches are very likely
to be sampled from the same structure with the testing patch. There
is a strong correlation between the selected patches and the testing
patch, which is beneficial to the classification performance.

We used only the patch and coordinate features, which may in-
sufficiently discriminate the brain extraction task because of the
complex characteristics of the brain MRI images. In future studies,
other appearance and context features could be added to further
improve the classification accuracy obtained in the present study.
Althoughwe focused only on T1-weightedMRI images in the current
study, we can also apply the proposed method in other modalities,
particularly if the locally linear representation-based classifier is
trained with data acquired using the modality. If images from more
than one modality are available, features from the images of the pro-
vided modality can be extracted; as such, classification results will
possibly be improved.

Computation time is another aspect of the proposed method
that could be improved. The classification step consumes approxi-
mately 20 min in the proposed method at N = 30,000. This imple-
mentation was run in a single thread. However, the voxel-based
classification in the current study can be parallelized and imple-
mented to use multi-core CPUs, thereby significantly decreasing
processing time.

Brain extraction is an important pre-processing step in brain image
analysis. Therefore, the effect of a brain extractionmethod on the subse-
quent analysis, such as cortical thickness measurement and brain atro-
phy estimation, is also a crucial factor to evaluate the performance
of the brain extraction method. However, the effect of the proposed
method on the subsequent analysis is not evaluated in the current
study. This is a limitation in the current study.

In conclusion, this study presented a novel brain extraction method
based on LLRC within a multi-resolution framework. The proposed
method was compared with BET, BSE, GCUT, ROBEX, and BEaST in
terms of four datasets. The accuracy of the proposed method is higher
than that of BET, BSE, GCUT, and ROBEX, and comparable to that of
BEaST.
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